Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.727
Filtrar
1.
Folia Med (Plovdiv) ; 66(1): 88-96, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38426470

RESUMO

AIM: Due to the importance of exotoxin A and pyocyanin in the pathogenicity of this bacterium, we decided to evaluate the prevalence of genes encoding these virulence factors in clinical isolates of P.aeruginosa.


Assuntos
Infecções por Pseudomonas , Piocianina , Humanos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Exotoxinas/genética , Fatores de Virulência/genética , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia
2.
Emerg Microbes Infect ; 13(1): 2316809, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38323591

RESUMO

Previous studies have mainly focused on outpatient cases of skin and soft tissue infections (SSTIs), with limited attention to inpatient occurrences. Thus, we aimed to compare the clinical parameters of inpatients with SSTIs, performed genomic characterization, and determined the subtypes of Panton-Valentine leucocidin (PVL) bacteriophages of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from these patients. We found that PVL-positive patients had shorter hospital stays (mean, 9 vs. 24 days; p < 0.001) and abscess resolution durations (mean, 8 vs. 13 days; p < 0.01). PVL-positive MRSA-induced SSTIs were more frequently associated with abscesses [36/55 (65.5%) vs. 15/124 (12.1%), p < 0.001], with 52.7% undergoing incision and drainage; over 80% of PVL-negative patients received incision, drainage, and antibiotics. In PVL-positive patients receiving empirical antibiotics, anti-staphylococcal agents such as vancomycin and linezolid were administered less frequently (32.7%, 18/55) than in PVL-negative patients (74.2%, 92/124), indicating that patients with PVL-positive SSTIs are more likely to require surgical drainage rather than antimicrobial treatment. We also found that the ST59 lineage was predominant, regardless of PVL status (41.3%, 74/179). Additionally, we investigated the linear structure of the lukSF-PV gene, revealing that major clusters were associated with specific STs, suggesting independent acquisition of PVL by different strain types and indicating that significant diversity was observed even within PVL-positive strains detected in the same facility. Overall, our study provides comprehensive insights into the clinical, genetic, and phage-related aspects of MRSA-induced SSTIs in hospitalized patients and contributes to a more profound understanding of the epidemiology and evolution of these pathogens in the Chinese population.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Estafilocócicas , Infecções Cutâneas Estafilocócicas , Humanos , Pacientes Internados , Infecções dos Tecidos Moles/epidemiologia , Estudos Retrospectivos , Leucocidinas/genética , Infecções Estafilocócicas/epidemiologia , Infecções Cutâneas Estafilocócicas/epidemiologia , Exotoxinas/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Abscesso , Infecções Comunitárias Adquiridas/epidemiologia
3.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38052492

RESUMO

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Assuntos
Antineoplásicos , Toxinas Bacterianas , Imunotoxinas , Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Exotoxinas/genética , Exotoxinas/farmacologia , Exotoxinas/química , Imunotoxinas/genética , Imunotoxinas/farmacologia , Imunotoxinas/química , Mesotelina , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , ADP Ribose Transferases/genética , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias/tratamento farmacológico
4.
Toxins (Basel) ; 15(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133203

RESUMO

The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.


Assuntos
Toxinas Bacterianas , Imunotoxinas , Neoplasias , Humanos , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/uso terapêutico , Toxina Diftérica/genética , Imunotoxinas/genética , Imunotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico , 60629 , Proteínas Recombinantes de Fusão/uso terapêutico , Exotoxinas/genética , Mamíferos
5.
Microbiol Spectr ; 11(6): e0124823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37929951

RESUMO

IMPORTANCE: USA300 is an MRSA clone producing PVL, a toxin associated with SSTIs. ΨUSA300 is a USA300 variant recently identified in Japan by Takadama et al. (15). Here, we found that the prevalence rate of PVL-positive MRSA in S. aureus was elevated in the Japanese community, and ΨUSA300 accounted for most of them. ΨUSA300 strains have been isolated from several areas in Japan and were associated with deep-seated SSTIs. This study highlighted the emerging threat posed by ΨUSA300 in Japan.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Japão/epidemiologia , Staphylococcus aureus/genética , Prevalência , Infecções Estafilocócicas/epidemiologia , Exotoxinas/genética
6.
Clin Microbiol Rev ; 36(4): e0014822, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982596

RESUMO

SUMMARYMethicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus , Virulência , Antibacterianos , Exotoxinas/genética , Exotoxinas/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Fatores de Virulência/genética
7.
BMC Microbiol ; 23(1): 315, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891473

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus is linked to both nosocomial and community infections. One of the key virulence factors of S. aureus is Panton-Valentine leukocidin (PVL). The PVL genes are mostly associated with community-acquired MRSA (CA-MRSA). This study evaluates the prevalence of PVL genes as a marker for CA-MRSA at tertiary hospitals in Mansoura, Dakahlia, Egypt. S. aureus was isolated from clinical specimens obtained from different departments of tertiary hospitals, outpatient clinics, and hospital healthcare workers (HCWs). PCR was used to detect the mecA, PVL, and SCCmec genes among the recovered isolates. Standard broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) of nine antibiotics against S. aureus. RESULTS: Two hundred S. aureus isolates were recovered and identified out of the total isolates (n = 320). The mecA gene was detected in 103 S. aureus isolates (51.5%). Among the MRSA isolates, 46.60% were PVL-positive. The incidence of the PVL genes of MRSA in nosocomial (HA), outpatient clinics (CA), and HCWs was 46.66%, 56.52%, and 42%, respectively. All MRSA isolates showed resistance to cefoxitin. The percentage of resistance to most tested antibiotics was high, except for ciprofloxacin (6.85%). Both antibiotic resistance and multidrug resistance among MRSA isolates were generally higher in PVL-positive isolates than in PVL-negative isolates in HA- and CA-MRSA isolates. While SCCmec type V was the most prevalent in PVL-positive MRSA stains, type I was the most prevalent in PVL-negative isolates. CONCLUSION: This study revealed that PVL genes are generally highly prevalent among mecA-positive MRSA isolates, whether they are CA-MRSA, HA-MRSA, or HCW isolates. Therefore, PVL is not a valid marker for CA-MRSA in Mansoura, Dakahlia Governorate, Egypt, as has been reported in other countries. Further epidemiologic studies are required to track the incidence of PVL in HA-MRSA, CA-MRSA, and HCW isolates in other Egyptian governorates.


Assuntos
Infecções Comunitárias Adquiridas , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Egito/epidemiologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/genética , Infecções Comunitárias Adquiridas/epidemiologia , Exotoxinas/genética , Leucocidinas/genética , Antibacterianos/farmacologia , Centros de Atenção Terciária , Infecção Hospitalar/epidemiologia
8.
Microbiol Spectr ; 11(6): e0165623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800956

RESUMO

IMPORTANCE: The leukocidins play an important role in disarming the host immune system and promoting infection. While both SarS and Rot have been established as repressors of leukocidins, the importance of each repressor in infection is unclear. Here, we demonstrate that repression by SarS and Rot is not additive and show that in addition to upregulating expression of each other, they are also able to bind concurrently to the leukocidin promoters. These findings suggest that both repressors are necessary for maximal repression of lukED and lukSF-PV and illuminate another complex relationship among Staphylococcus aureus virulence regulators.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Leucocidinas/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exotoxinas/genética , Exotoxinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo
9.
J Hosp Infect ; 141: 88-98, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678435

RESUMO

This is a report on an outbreak of Panton-Valentine leucocidin-producing meticillin-resistant Staphylococcus aureus (PVL-MRSA) in an intensive care unit (ICU) during the COVID-19 pandemic that affected seven patients and a member of staff. Six patients were infected over a period of ten months on ICU by the same strain of PVL-MRSA, and a historic case identified outside of the ICU. All cases were linked to a healthcare worker (HCW) who was colonized with the organism. Failed topical decolonization therapy, without systemic antibiotic therapy, resulted in ongoing transmission and one preventable acquisition of PVL-MRSA. The outbreak identifies the support that may be needed for HCWs implicated in outbreaks. It also demonstrates the role of whole-genome sequencing in identifying dispersed and historic cases related to the outbreak, which in turn aids decision-making in outbreak management and HCW support. This report also includes a review of literature of PVL-MRSA-associated outbreaks in healthcare and highlights the need for review of current national guidance in the management of HCWs' decolonization regimen and return-to-work recommendations in such outbreaks.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Meticilina , Leucocidinas/genética , Pandemias/prevenção & controle , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/prevenção & controle , Exotoxinas/genética , Surtos de Doenças/prevenção & controle , Staphylococcus aureus , Pessoal de Saúde
10.
Am J Trop Med Hyg ; 109(5): 1118-1121, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722664

RESUMO

There is a knowledge gap in the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) causing bloodstream infections (BSIs) in Peru. Through a surveillance study in 13 hospitals of 10 Peruvian regions (2017-2019), we assessed the proportion of MRSA among S. aureus BSIs as well as the molecular typing of the isolates. A total of 166 S. aureus isolates were collected, and 36.1% of them were MRSA. Of note, MRSA isolates with phenotypic and genetic characteristics of the hospital-associated Chilean-Cordobes clone (multidrug-resistant SCCmec I, non-Panton-Valentine leukocidin [PVL] producers) were most commonly found (70%), five isolates with genetic characteristics of community-associated MRSA (CA-MRSA)-SCCmec IV, PVL-producer-(8.3%) were seen in three separate regions. These results demonstrate that hospital-associated MRSA is the most frequent MRSA found in patients with BSIs in Peru. They also show the emergence of S. aureus with genetic characteristics of CA-MRSA. Further studies are needed to evaluate the extension of CA-MRSA dissemination in Peru.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Peru/epidemiologia , Infecções Estafilocócicas/epidemiologia , Infecções Comunitárias Adquiridas/epidemiologia , Exotoxinas/genética , Leucocidinas/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Jpn J Infect Dis ; 76(6): 376-380, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37648487

RESUMO

This study analyzed 26 Staphylococcus aureus strains, including 16 methicillin-resistant S. aureus (MRSA) and 10 methicillin-susceptible S. aureus (MSSA), collected from eight medical institutions in the Chiba Prefecture that requested a toxin gene analysis between 2015 and 2021. A total of 14 Panton-Valentine leukocidin (PVL) positive strains were identified, including MSSA. PVL-positive strains were classified into seven types according to polymerase chain reaction-based open reading frame typing (POT); of these types, three POT MRSA strains have not been previously reported, and one has been previously reported as PVL-negative. Some strains tested positive for both PVL and toxic shock syndrome toxin 1. One POT type was identified in both PVL-positive and PVL-negative strains. To the best of our knowledge, this is the first report on the regional spread of highly pathogenic S. aureus strains based on the POT method in children from multiple medical institutions. This method is useful for estimating the spread of toxin gene-carrying strains in the community owing to its association with toxin genes. As the number of PVL-positive strains in Japan increases, it is important to analyze the isolates of severe S. aureus infections in children by combining toxin gene analyses with the POT method.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Criança , Staphylococcus aureus/genética , Staphylococcus aureus Resistente à Meticilina/genética , Fases de Leitura Aberta , Exotoxinas/genética , Infecções Estafilocócicas/epidemiologia , Reação em Cadeia da Polimerase
12.
J Biol Chem ; 299(9): 105147, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567478

RESUMO

The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.


Assuntos
Proteínas de Bactérias , Dissulfetos , Exotoxinas , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas , Espaço Intracelular , Compostos de Sulfidrila , Ativação Transcricional , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exotoxinas/genética , Exotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ativação Transcricional/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Dissulfetos/metabolismo , Dissulfetos/farmacologia , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia , Espaço Intracelular/metabolismo , Espectrometria de Massas , Metabolômica , Dissulfeto de Glutationa/farmacologia , Microbioma Gastrointestinal/imunologia
13.
J Biomed Sci ; 30(1): 52, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430325

RESUMO

BACKGROUND: Streptococcus pyogenes (group A streptococci; GAS) is the main causative pathogen of monomicrobial necrotizing soft tissue infections (NSTIs). To resist immuno-clearance, GAS adapt their genetic information and/or phenotype to the surrounding environment. Hyper-virulent streptococcal pyrogenic exotoxin B (SpeB) negative variants caused by covRS mutations are enriched during infection. A key driving force for this process is the bacterial Sda1 DNase. METHODS: Bacterial infiltration, immune cell influx, tissue necrosis and inflammation in patient´s biopsies were determined using immunohistochemistry. SpeB secretion and activity by GAS post infections or challenges with reactive agents were determined via Western blot or casein agar and proteolytic activity assays, respectively. Proteome of GAS single colonies and neutrophil secretome were profiled, using mass spectrometry. RESULTS: Here, we identify another strategy resulting in SpeB-negative variants, namely reversible abrogation of SpeB secretion triggered by neutrophil effector molecules. Analysis of NSTI patient tissue biopsies revealed that tissue inflammation, neutrophil influx, and degranulation positively correlate with increasing frequency of SpeB-negative GAS clones. Using single colony proteomics, we show that GAS isolated directly from tissue express but do not secrete SpeB. Once the tissue pressure is lifted, GAS regain SpeB secreting function. Neutrophils were identified as the main immune cells responsible for the observed phenotype. Subsequent analyses identified hydrogen peroxide and hypochlorous acid as reactive agents driving this phenotypic GAS adaptation to the tissue environment. SpeB-negative GAS show improved survival within neutrophils and induce increased degranulation. CONCLUSIONS: Our findings provide new information about GAS fitness and heterogeneity in the soft tissue milieu and provide new potential targets for therapeutic intervention in NSTIs.


Assuntos
Neutrófilos , Streptococcus pyogenes , Streptococcus pyogenes/genética , Proteínas de Bactérias , Exotoxinas/genética
14.
Microbiol Spectr ; 11(4): e0107323, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347186

RESUMO

Staphylococcus aureus gamma-hemolysin CB (HlgCB) is a core-genome-encoded pore-forming toxin that targets the C5a receptor, similar to the phage-encoded Panton-Valentine leucocidin (PVL). Absolute quantification by mass spectrometry of HlgCB in 39 community-acquired pneumonia (CAP) isolates showed considerable variations in the HlgC and HlgB yields between isolates. Moreover, although HlgC and HlgB are encoded on a single operon, their levels were dissociated in 10% of the clinical strains studied. To decipher the molecular basis for the variation in hlgCB expression and protein production among strains, different regulation levels were analyzed in representative clinical isolates and reference strains. Both the HlgCB level and the HlgC/HlgB ratio were found to depend on hlgC promoter activity and mRNA processing and translation. Strikingly, only one single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR) of hlgCB mRNA strongly impaired hlgC translation in the USA300 strain, leading to a strong decrease in the level of HlgC but not in HlgB. Finally, we found that high levels of HlgCB synthesis led to mortality in a rabbit model of pneumonia, correlated with the implication of the role of HlgCB in severe S. aureus CAP. Taken together, this work illustrates the complexity of virulence factor expression in clinical strains and demonstrates a butterfly effect where subtle genomic variations have a major impact on phenotype and virulence. IMPORTANCE S. aureus virulence in pneumonia results in its ability to produce several virulence factors, including the leucocidin PVL. Here, we demonstrate that HlgCB, another leucocidin, which targets the same receptors as PVL, highly contributes to S. aureus virulence in pvl-negative strains. In addition, considerable variations in HlgCB quantities are observed among clinical isolates from patients with CAP. Biomolecular analyses have revealed that a few SNPs in the promoter sequences and only one SNP in the 5' UTR of hlgCB mRNA induce the differential expression of hlgCB, drastically impacting hlgC mRNA translation. This work illustrates the subtlety of regulatory mechanisms in bacteria, especially the sometimes major effects on phenotypes of single nucleotide variation in noncoding regions.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Coelhos , Staphylococcus aureus/metabolismo , Leucocidinas/genética , Leucocidinas/metabolismo , Leucocidinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Virulência/genética , Exotoxinas/genética , Exotoxinas/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
J Dairy Sci ; 106(10): 6723-6730, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210361

RESUMO

Streptococcus pyogenes is an important human pathogen, commonly spread by airborne droplets but also by ingestion of contaminated food. Apart from causing infection, this pathogen produces 13 distinct types of streptococcal pyrogenic exotoxins (SPE). The current method for detection cannot distinguish between the biologically active form of SPE that has been reported to cause foodborne outbreaks and the inactivated toxin that poses no health risk. To measure the biological activity of SPE type C (SPE-C), one such toxin that was linked to foodborne outbreaks associated with milk and milk products, we developed a cell-based assay that can discern between biologically active and inactive SPE-C. To the best of our knowledge, this is the first showing that SPE-C activates T-cells expressing Vß8. With this finding, we used a T-cell line natively expressing Vß8 that was genetically engineered to also express the luciferase reporter gene under the regulation of nuclear factor of activated T-cells response element in combination with a B-cell line to present the recombinant SPE-C (rSPE-C) toxin via major histocompatibility complex (MHC) class II to the Vß8 T-cell receptor (TCR) in an assay to detect and to discern between biologically active and inactive rSPE-C. By using this system, we demonstrated that SPE-C induced significant IL-2 secretion after 72 h and visible light emission after only 5 h, doubling by 24 h. We utilize this finding to assess the specificity of the assay and the effect of pasteurization on SPE-C activity. We observed no cross-reactivity with SPE-B and significant loss of SPE-C biological activity in spiked phosphate-buffered saline while SPE-C spiked into milk is heat stable. Once SPE-C has formed, it is infeasible to eliminate it from milk by thermal treatment.


Assuntos
Proteínas de Bactérias , Exotoxinas , Humanos , Exotoxinas/genética , Streptococcus pyogenes/genética , Antígenos de Histocompatibilidade Classe II , Receptores de Antígenos de Linfócitos T
16.
Front Cell Infect Microbiol ; 13: 1162617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077532

RESUMO

Introduction: The bacterial pathogen Staphylococcus aureus harbors numerous virulence factors that impact infection severity. Beyond virulence gene presence or absence, the expression level of virulence proteins is known to vary across S. aureus lineages and isolates. However, the impact of expression level on severity is poorly understood due to the lack of high-throughput quantification methods of virulence proteins. Methods: We present a targeted proteomic approach able to monitor 42 staphylococcal proteins in a single experiment. Using this approach, we compared the quantitative virulomes of 136 S. aureus isolates from a nationwide cohort of French patients with severe community-acquired staphylococcal pneumonia, all requiring intensive care. We used multivariable regression models adjusted for patient baseline health (Charlson comorbidity score) to identify the virulence factors whose in vitro expression level predicted pneumonia severity markers, namely leukopenia and hemoptysis, as well as patient survival. Results: We found that leukopenia was predicted by higher expression of HlgB, Nuc, and Tsst-1 and lower expression of BlaI and HlgC, while hemoptysis was predicted by higher expression of BlaZ and HlgB and lower expression of HlgC. Strikingly, mortality was independently predicted in a dose-dependent fashion by a single phage-encoded virulence factor, the Panton-Valentine leucocidin (PVL), both in logistic (OR 1.28; 95%CI[1.02;1.60]) and survival (HR 1.15; 95%CI[1.02;1.30]) regression models. Discussion: These findings demonstrate that the in vitro expression level of virulence factors can be correlated with infection severity using targeted proteomics, a method that may be adapted to other bacterial pathogens.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Pneumonia Estafilocócica , Infecções Estafilocócicas , Humanos , Pneumonia Estafilocócica/microbiologia , Staphylococcus aureus , Fatores de Virulência/genética , Hemoptise , Proteômica , Exotoxinas/genética , Infecções Estafilocócicas/microbiologia , Infecções Comunitárias Adquiridas/microbiologia , Staphylococcus , Leucocidinas/genética , Staphylococcus aureus Resistente à Meticilina/genética
17.
Infect Immun ; 91(4): e0053222, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36939325

RESUMO

Staphylococcus aureus is a successful pathogen that produces a wide range of virulence factors that it uses to subvert and suppress the immune system. These include the bicomponent pore-forming leukocidins. How the expression of these toxins is regulated is not completely understood. Here, we describe a screen to identify transcription factors involved in the regulation of leukocidins. The most prominent discovery from this screen is that SarS, a known transcription factor which had previously been described as a repressor of alpha-toxin expression, was found to be a potent repressor of leukocidins LukED and LukSF-PV. We found that inactivating sarS resulted in increased virulence both in an ex vivo model using primary human neutrophils and in an in vivo infection model in mice. Further experimentation revealed that SarS represses leukocidins by serving as an activator of Rot, a critical repressor of toxins, as well as by directly binding and repressing the leukocidin promoters. By studying contemporary clinical isolates, we identified naturally occurring mutations in the sarS promoter that resulted in overexpression of sarS and increased repression of leukocidins in USA300 bloodstream clinical isolates. Overall, these data establish SarS as an important repressor of leukocidins and expand our understanding of how these virulence factors are being regulated in vitro and in vivo by S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Exotoxinas/genética , Exotoxinas/metabolismo , Leucocidinas/genética , Neutrófilos , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
18.
Emerg Infect Dis ; 29(5): 1055-1057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913919

RESUMO

We report detection of Panton-Valentine leukocidin-positive clonal complex 398 human-origin methicillin-resistant Staphylococcus aureus L2 in the Netherlands. This hypervirulent lineage originated in the Asia-Pacific Region and could become community-acquired in Europe after recurrent travel-related introductions. Genomic surveillance enables early detection to guide control measures and help limit spread of pathogens in urban settings.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Países Baixos/epidemiologia , Viagem , Infecções Estafilocócicas/epidemiologia , Doença Relacionada a Viagens , Exotoxinas/genética , Leucocidinas/genética , Infecções Comunitárias Adquiridas/epidemiologia
19.
Diagn Microbiol Infect Dis ; 106(1): 115919, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878139

RESUMO

We aimed to analyze the molecular epidemiology of 46 methicillin-resistant Staphylococcus aureus (MRSA) isolated from breast infections. The USA300 lineage carrying SCCmecIVa, arginine catabolic mobile element, t008, ST8, and Panton-Valentine leukocidin genes was predominant (93%). This is the first study that describes the spread of the USA300 methicillin-resistant Staphylococcus aureus clone in breast infections in Brazil.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Brasil/epidemiologia , Infecções Estafilocócicas/epidemiologia , Exotoxinas/genética , Leucocidinas/genética , Epidemiologia Molecular , DNA Bacteriano/genética
20.
Rev Assoc Med Bras (1992) ; 69(1): 51-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820713

RESUMO

OBJECTIVE: Toxin-antitoxin genes RelBE and HigBA are known to be involved in the formation of biofilm, which is an important virulence factor for Pseudomonas aeruginosa. The purpose of this study was to determine the presence of toxin-antitoxin genes and exoenzyme S and exotoxin A virulence genes in P. aeruginosa isolates and whether there is a relationship between toxin-antitoxin genes and virulence genes as well as antibiotic resistance. METHODS: Identification of the isolates and antibiotic susceptibilities was determined by a VITEK 2 (bioMérieux, France) automated system. The presence of toxin-antitoxin genes, virulence genes, and transcription levels were detected by real-time polymerase chain reaction. RESULTS: RelBE and HigBA genes were detected in 94.3% (82/87) of P. aeruginosa isolates, and exoenzyme S and exotoxin A genes were detected in all of the isolates (n=87). All of the isolates that harbor the toxin-antitoxin and virulence genes were transcribed. There was a significant increase in the RelBE gene transcription level in imipenem- and meropenem-sensitive isolates and in the HigBA gene transcription level in amikacin-sensitive isolates (p<0.05). There was a significant correlation between RelBE and exoenzyme S (p=0.001). CONCLUSION: The findings suggest that antibiotic resistance may be linked to toxin-antitoxin genes. Furthermore, the relationship between RelBE and exoenzyme S indicates that toxin-antitoxin genes in P. aeruginosa isolates are not only related to antibiotic resistance but also play an influential role in bacterial virulence. Larger collections of comprehensive studies on this subject are required. These studies should contribute significantly to the solution of the antibiotic resistance problem.


Assuntos
Antitoxinas , Pseudomonas aeruginosa , Humanos , Virulência/genética , Antitoxinas/genética , Resistência Microbiana a Medicamentos , Exotoxinas/genética , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...